The Dijikstra’s algorithm is a greedy algorithm to find the shortest path from the source vertex of the graph to the root node of the graph.
Time Complexity
The program contains two nested loops each of which has a complexity of O(n). n is number of vertices. So the complexity of algorithm is O(n2).

#include<stdio.h>
#include<conio.h>
#define INFINITY 9999
#define MAX 10
void dijkstra(int G[MAX][MAX],int n,int startnode);
int main()
{
int G[MAX][MAX],i,j,n,u;
printf("Enter no. of vertices:");
scanf("%d",&n);
printf("\nEnter the adjacency matrix:\n");
for(i=0;i<n;i++)
for(j=0;j<n;j++)
scanf("%d",&G[i][j]);
printf("\nEnter the starting node:");
scanf("%d",&u);
dijkstra(G,n,u);
return 0;
}
void dijkstra(int G[MAX][MAX],int n,int startnode)
{
int cost[MAX][MAX],distance[MAX],pred[MAX];
int visited[MAX],count,mindistance,nextnode,i,j;
//pred[] stores the predecessor of each node
//count gives the number of nodes seen so far
//create the cost matrix
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(G[i][j]==0)
cost[i][j]=INFINITY;
else
cost[i][j]=G[i][j];
//initialize pred[],distance[] and visited[]
for(i=0;i<n;i++)
{
distance[i]=cost[startnode][i];
pred[i]=startnode;
visited[i]=0;
}
distance[startnode]=0;
visited[startnode]=1;
count=1;
while(count<n-1)
{
mindistance=INFINITY;
//nextnode gives the node at minimum distance
for(i=0;i<n;i++)
if(distance[i]<mindistance&&!visited[i])
{
mindistance=distance[i];
nextnode=i;
}
//check if a better path exists through nextnode
visited[nextnode]=1;
for(i=0;i<n;i++)
if(!visited[i])
if(mindistance+cost[nextnode][i]<distance[i])
{
distance[i]=mindistance+cost[nextnode][i];
pred[i]=nextnode;
}
count++;
}
//print the path and distance of each node
for(i=0;i<n;i++)
if(i!=startnode)
{
printf("\nDistance of node%d=%d",i,distance[i]);
printf("\nPath=%d",i);
j=i;
do
{
j=pred[j];
printf("<-%d",j);
}while(j!=startnode);
}
}